Nacelle-mounted lidar for Power Performance Testing — A joint industry project by **ENGIE North America**, **GE Renewables**, **DNV**, and Vaisala

Robin COTE

WindCube Nacelle Product Manager - Vaisala

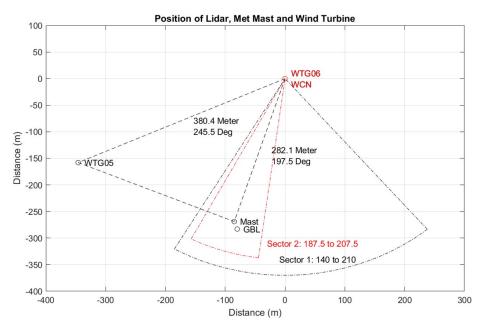
ACP Webinar – Wind Turbine Testing Unsing Nacelle Lidar– 23 September

A joint industry Power Performance Testing (PPT) project

Objectives

- Extensive field study to prepare for the use of nacelle-mounted lidars for PPT on operational basis
- First joint industry project in the context of the IEC 61400-50-3 standard upcoming release

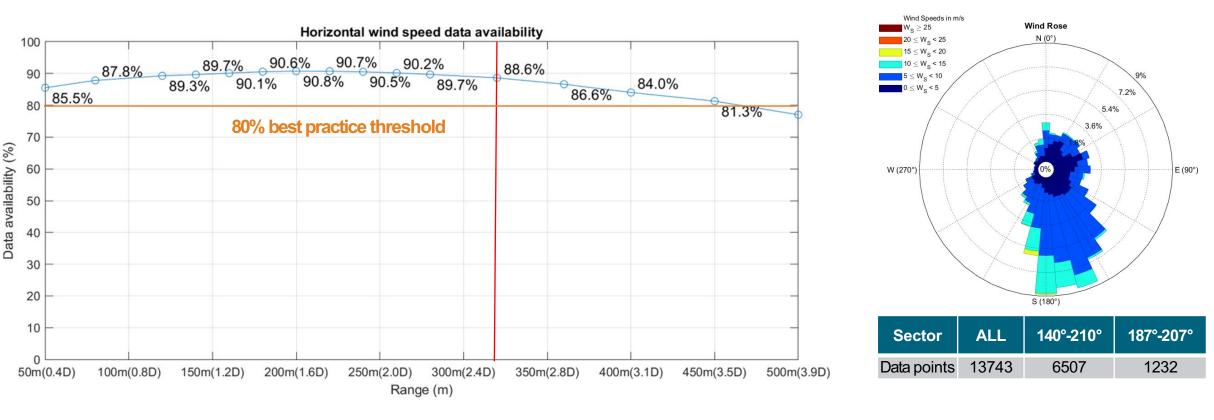
Methodology


- 3-months campaign at ENGIE's wind farm in the US
- Onshore flat terrain
- Reference instruments: IEC met mast and WindCube ground-based lidar

Direct comparison of nacelle lidar, ground-based lidar, and IEC met mast

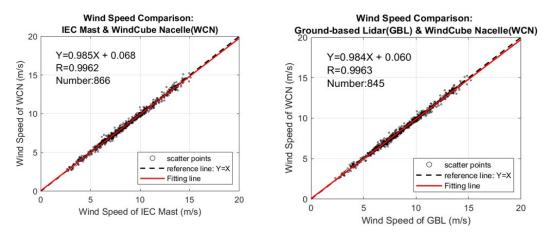
Мар

Instrumentation	Туре	Measurement Height [m]	Distance from WTG [m]	Distance from WTG in [D] (rotor diameter)
Nacelle-mounted lidar	WindCube Nacelle	89m	50m-700m	0.4D-5.5D
Met mast	IEC compliant	32m-89m	282m	2.2D
Ground-based lidar	WindCube	40m-200m	290m	2.3D

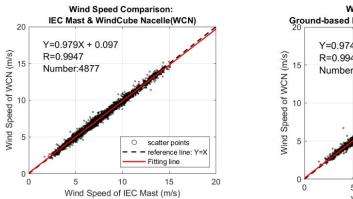

Two wind sectors:

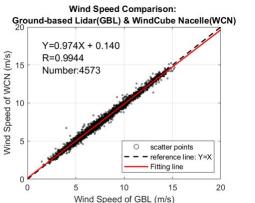
- 1) 140°-210°: IEC valid wind sector
- 2) 187°-207°: met mast centered wind sector

Data availability

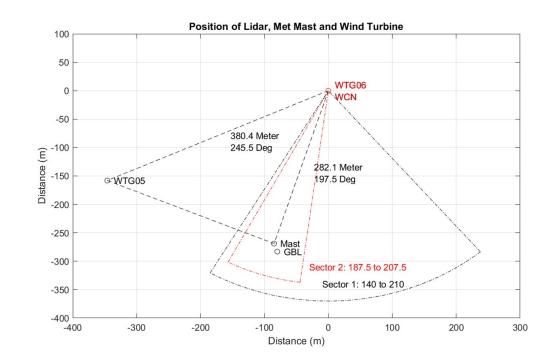

Key takeaway

- 88.6% HWS data availability at 2.5D
- Above 80% availability threshold at most ranges between 2D and 4D

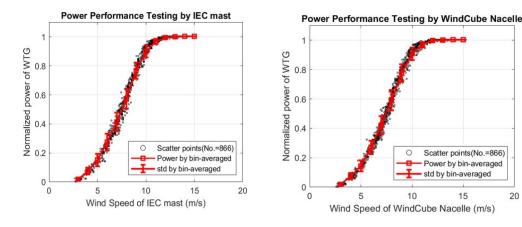


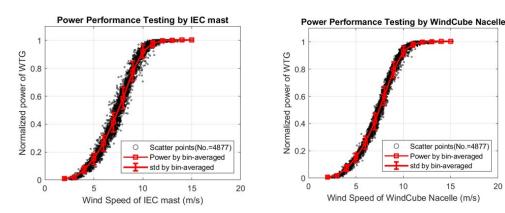

Wind speed correlation

Reference instruments centered wind sector: 187°-207°


Valid IEC wind sector: 140°-210°

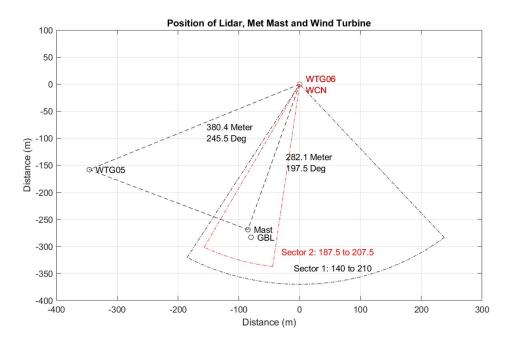
Key takeaway


 Better wind speed correlation between the reference instruments and the nacelle lidar when using the smaller wind sector



Power curve comparison

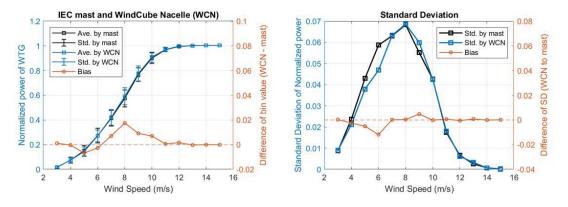
Reference instruments centered wind sector: 187°-207°

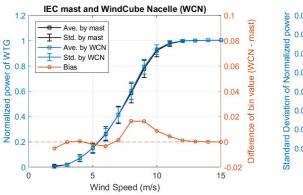


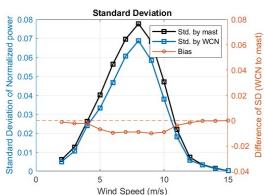
Valid IEC wind sector: 140°- 210°

Key takeaway

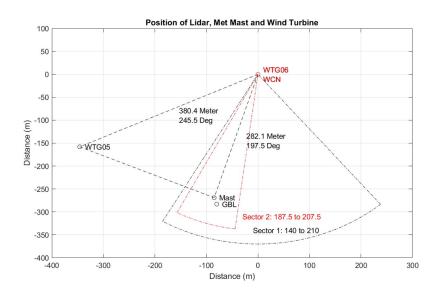
- Lower scatter observed for Nacelle lidar for the larger wind sector
- As it is always measuring in front of the turbine, Nacelle lidar is more representative of the wind hitting the turbine due to better spatial coherence for larger wind sectors




20

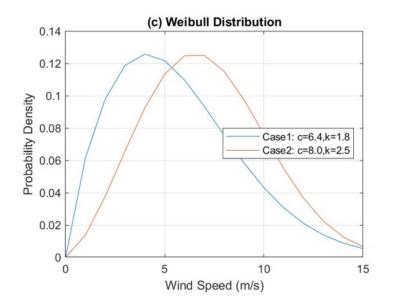

Power curve comparison

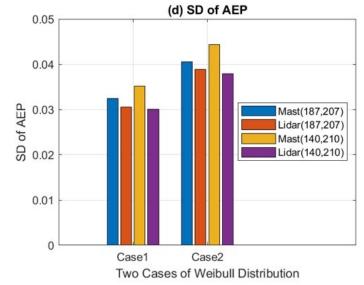
Reference instruments centered wind sector: 187°-207°


Valid IEC wind sector: 140°- 210°

Key takeaway

- Bin-wise difference between the two power curves is < 2% for both sectors.
- Power curve standard deviation is smaller for the nacelle lidar, especially when comparing the results for the wider wind sector.
- Can be explained by the better spatial coherence of Nacelle lidar measurements in the larger wind sector.





AEP standard deviation

Key takeaway

	Mast(187,207)	Lidar(187,207)	Mast(140,210)	Lidar(140,210)
Case1	0.032	0.031	0.035	0.030
Case2	0.041	0.039	0.044	0.038

- AEP standard deviation measured with the met mast is bigger than when measuring with the nacelle lidar.
 - AEP standard deviation measured by the nacelle lidar is smaller when using the larger wind sector.
 - This also highlights the better spatial coherence of the nacelle lidar measurements.

Conclusion

- Accurate measurements compared to other IEC-compliant measurement instruments.
- Lower uncertainty due to better spatial coherence of nacelle lidar measurements.
- Pulsed lidar measurement capabilities can be used for other applications: shear, veer, TI, REWS, yaw misalignment, NTF, blockage effects, etc.
- **Ease of installation**: half of a day, following GE turbine installation guidelines.
- Accepted by developers, manufacturers, and consultants that are gaining more and more experience with the technology.

Industry is getting ready for PPT using nacelle-mounted lidars on operational basis in preparation of IEC-50-3 standard release

Conclusion

Alex James, Lead Performance Engineer - GE Renewables:

"For GE, this study will be a key piece of the experience needed to incorporate nacelle-mounted lidar (NML) into our power curve warranties. The results are encouraging that NML can be a viable means to obtain quality wind field data, particularly the observed decrease in power curve standard deviation."


```
GE Renewable Energy
```

Hong Liu, Engineering Senior Advisor - ENGIE North America:

"For ENGIE, this study provided us with key information to optimize our power performance measurements program and gain some experience in using nacelle-mounted lidar to support operations and project development."

Thank you

Contact: robin.cote@vaisala.com

Special thanks:

- Zhi LIANG, Vaisala
- Luke SIMMONS, DNV
- Hong LIU, ENGIE North America
- Alex JAMES, GE Renewables

VAISALA